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ESTIMATION IN DIRICHLET RANDOM EFFECTS MODELS

BY MINJUNG KYUNG1, JEFF GILL1 AND GEORGE CASELLA2

University of Florida, Washington University and University of Florida

We develop a new Gibbs sampler for a linear mixed model with a Dirich-
let process random effect term, which is easily extended to a generalized lin-
ear mixed model with a probit link function. Our Gibbs sampler exploits the
properties of the multinomial and Dirichlet distributions, and is shown to be
an improvement, in terms of operator norm and efficiency, over other com-
monly used MCMC algorithms. We also investigate methods for the estima-
tion of the precision parameter of the Dirichlet process, finding that maximum
likelihood may not be desirable, but a posterior mode is a reasonable ap-
proach. Examples are given to show how these models perform on real data.
Our results complement both the theoretical basis of the Dirichlet process
nonparametric prior and the computational work that has been done to date.

1. Introduction. Linear and generalized linear mixed models have become
important statistical tools bringing more flexibility through the addition of random
effects to the more traditional linear models. A general mixed effects model can be
written as

(Y1, . . . , Yn) ∼ f (y1, . . . , yn|θ,ψ1, . . . ,ψn) = ∏
i

f (yi |θ,ψi),

ψi ∼ G, i = 1, . . . , n,

where f and G are often taken to be normal. The addition of a link function turns
this into a generalized linear mixed model; we will discuss that below. The restric-
tion of G to a normal distribution is sometimes thought to be limiting. For example,
researchers in the social sciences are uncomfortable with this assumption, wanting
a more flexible, possibly nonparametric structure here [Gill and Casella (2009)].
Another troublesome fact, as noted by Burr and Doss (2005), is that random ef-
fects, unlike error terms, cannot be checked (there are no residuals). Thus we are
totally dependent on this uncheckable model assumption.

One way of relaxing this assumption is with a richer, nonparametric model for
ψ with a popular alternative being the Dirichlet process

ψi ∼ D P(m,φ0), i = 1, . . . , n,
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where D P is the Dirichlet process with base measure φ0 and precision parame-
ter m. By moving to this model we not only relax the normal assumption, but also
provide a richer model for the random effects. Such a model has potential for cap-
turing more types of variability in those effects with the possible end result of more
precise estimates of the fixed effects. Here we will look at ways to fit such models,
focusing on methods of estimating the precision parameter m, and evaluating and
improving on Gibbs samplers for the models.

1.1. Background. Dirichlet process mixture models were introduced by Fer-
guson (1973) who defined the process and investigated basic properties. Black-
well and MacQueen (1973) showed that the marginal distribution of the Dirichlet
process is equal to the distribution of the nth step of a Pólya urn process. In partic-
ular, they proved that for ψ1, . . . ,ψn i.i.d. from G ∼ D P , the joint distribution of
ψ is a product of successive conditional distributions of the form

ψi |ψ1, . . . ,ψi−1,m ∼ m

i − 1 + m
φ0(ψi) + 1

i − 1 + m

i−1∑
l=1

δ(ψl = ψi),(1)

where δ denotes the Dirac delta function.
Other work that characterizes the properties of the Dirichlet process includes

Korwar and Hollander (1973) and Sethuraman (1994). Work that has particular
importance for our development is that of Lo (1984), who derives the analytic
form of a Bayesian density estimation that is generated by convoluting a known
density kernel with a Dirichlet process, and Liu (1996), who derives an identity for
the profile likelihood estimator of m.

The implementation of the Dirichlet process mixture model has been made
feasible by modern methods of Bayesian computation and efficient algorithms.
The work of Escobar and West (1995) and MacEachern and Muller (1998) devel-
oped estimation techniques and sampling algorithms, and Neal (2000) provided an
extended and more efficient Gibbs sampler.

Note that the representation (1) induces clusters in the random effects since with
positive probability the value of ψi is equal to one of the previous values. McCul-
lagh and Yang (2006) showed that the marginal distribution of these Dirichlet clus-
ters can be derived using cycles of integers and exchangeability based on Pitman
(1996), and an exchangeable cluster process can be generated by a standard Dirich-
let allocation scheme. Quintana and Iglesias (2003) show that the joint marginal
distribution of the Dirichlet observations can be expressed as a product partition
model. Such models were introduced by Hartigan (1990) and Barry and Hartigan
(1992), and are based on modeling random partitions of the sample space.

It is interesting to note that with n observations from a Dirichlet process with
precision parameter m, the marginal distribution of a partition {n1, n2, . . . , nk},
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where
∑

j nj = n,nj ≥ 1, is given by

π(n1, n2, . . . , nk) = �(m)

�(m + n)
mk

k∏
j=1

�(nj ),(2)

which is a normalized probability distribution on the set of all partitions of n ob-
servations. This is the same distribution derived by McCullagh and Yang (2006)
using cycles of integers (which can be related to the partitions) and has been used
by other authors [Crowley (1997), Booth, Casella and Hobert (2008)] as a prior
distribution on clusters for a Bayesian clustering algorithm.

Most of theoretical and computational work for the Dirichlet process mixture
models focus on the efficient estimation of φ0. For the Dirichlet prior, we also need
to consider the precision parameter m because it strongly influences the number
of distinct components, which is the distribution of the underlying random effects.
The estimation of m has had difficulties in implementation due to computational
intractability. The number of distinct components is not known in practice and it
can be changed if new data are observed. Doss (2008) notes that the precision
parameter is typically the most difficult to estimate or defend as a fixed value.

The approach of Liu (1996), for the estimation of m, is to use sequential im-
putation to estimate m using maximum likelihood and treating the subclusters as
missing data. Naskar and Das (2004, 2006) estimated m using Monte Carlo EM
but did not investigate the properties of the solution. Our approach is based on us-
ing marginal or profile likelihood for m, and using the Gibbs sampler to estimate
the model parameters. This is a variation of Casella (2001) who showed that, using
an empirical Bayes approach, the hyperparameters can be estimated in a computa-
tionally feasible way.

1.2. Summary. In this paper, for a mixed Dirichlet random effects model, we
develop algorithms for estimation of the precision parameter and MCMC algo-
rithms for fitting the models. We focus on linear models but also show how to ex-
tend our results to a generalized Dirichlet process mixed model with a probit link
function. In Section 2 we develop our model and its probit extension using a new
parameterization of the Dirichlet mixed model. Section 3 shows how to estimate
the precision parameter, m. There we see that there is, in fact, not much informa-
tion in the data about m (as it only depends on the size of the subclusters). We find
that the MLE of Liu (1996) can be unstable and show how to obtain a more stable
posterior mode estimate. Section 4 derives a Gibbs sampler for the model para-
meters and the subclusters of the Dirichlet process, and we use our new parame-
terization of the hierarchical model to derive a new Gibbs sampler that more fully
exploits the structure of the model and mixes very well. We can adapt the results
of Hobert and Marchev (2008) to establish that our sampler is an improvement,
in terms of operator norm and efficiency, over other commonly used algorithms.
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Section 6 given details for the estimation of the precision parameter, and Section
7 contains illustrative applications. Section 8 summarizes these contributions and
adds some perspective, and there are a number of technical appendices.

2. Models and likelihoods. A general random effects Dirichlet model can be
written as

(Y1, . . . , Yn) ∼ f (y1, . . . , yn|θ,ψ1, . . . ,ψn) = ∏
i

f (yi |θ,ψi),(3)

ψi ∼ D P(m,φ0), i = 1, . . . , n,

where D P is the Dirichlet process with base measure φ0 and precision parame-
ter m. The vector θ contains all of the model parameters which we will address a
bit later.

Applying the Blackwell–MacQueen formula (1), we can calculate the likelihood
function, which by definition is integrated over the random effects, as

L(θ |y) =
∫

f (y1, . . . , yn|θ,ψ1, . . . ,ψn)π(ψ1, . . . ,ψn) dψ1 · · · dψn,

where

π(ψ1, . . . ,ψn) =
n∏

i=1

mφ0(ψi) + ∑i−1
j=1 I (ψj = ψi)

m + i − 1
.(4)

From Lo’s (1984) Lemma 2 and following the development in Liu’s (1996)
Theorem 1, we can evaluate this integral to get

L(θ |y) = �(m)

�(m + n)

n∑
k=1

mk
∑

C:|C|=k

k∏
j=1

�(nj )

∫
f

(
y(j)|θ,ψj

)
φ0(ψj ) dψj ,

where C defines the subclusters, y(j) is the vector of yis that are in subcluster j and
ψj is the common parameter for that subcluster. There are Sn,k different partitions
C, the Stirling number of the second kind.

A partition C clusters of the sample of size n into k groups, k = 1, . . . , n, and
we call these “subclusters” since the grouping is done nonparametrically rather
than on substantive criteria. That is, it is likely that any real underlying clusters
would be broken up into multiple subclusters by the nonparametric fit since there
is little penalty for over-separation. Recall that the regular GLMM assumes that
the random effect ψis are independent and identically distributed with the normal
distribution N(0, σ 2

ψ). However, the subclustering assigns different normal para-
meters across groups and the same parameters within groups; cases are i.i.d. only
if they are assigned to the same subcluster.
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2.1. A matrix representation of subclusters. Each partition C can be associ-
ated with an n × k matrix A defined by A′ = (a′

1, a
′
2, . . . , a

′
n) where ai is a 1 × k

vector of all zeros except for a 1 in one position that indicates which group the ob-
servation is from. Note that the column sums of A are (n1, n2, . . . , nk), the number
of observations in the groups, and there are, of course, Sn,k such matrices. Specifi-
cally, if the partition C has groups {S1, . . . , Sk}, then if i ∈ Sj , ψi = ηj and the ran-
dom effect can be rewritten as ψ = Aη. For example, if S1 = {3,4,6}, S2 = {1,2},
S3 = {5},

⎛⎜⎜⎜⎝
ψ1
ψ2
...

ψ6

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1 0
1 0 0
1 0 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝η1

η2
η3

⎞⎠ .(5)

We then have ∑
C:|C|=k

k∏
j=1

�(nj )

∫
f

(
y(j)|θ,ψj

)
φ0(ψj ) dψj

= ∑
A∈Ak

k∏
j=1

�(nj )

∫
f (y|θ,Aη)φ0(η) dη,

where Ak is the set of all matrices A and ηj ∼ φ0, independent. If we define

f (y|θ,A) =
∫

f (y|θ,Aη)φ0(η) dη,(6)

the likelihood function is

L(θ |y) = �(m)

�(m + n)

n∑
k=1

mk
∑

A∈Ak

k∏
j=1

�(nj )f (y|θ,A).(7)

Note that if the integral in (6) can be done analytically, as will happen in the nor-
mal case discussed next, we have effectively eliminated the random effects from
the likelihood, replacing them with the A matrices, which serve to group the ob-
servations.

2.2. Marginalizing the random effects. Start with a normal linear model,

Y|ψ ∼ N(Xβ + ψ, σ 2I ),

where ψ = (ψ1, . . . ,ψn)
′, ψi ∼ D P(m,N(0, τ 2)), i = 1, . . . , n, independent.

When we introduce the A matrices we get the models

Y|η,A ∼ N(Xβ + Aη, σ 2I ), η ∼ Nk(0, τ 2I ),
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and marginally, Y is multivariate normal with

EY = Xβ, Var Y = σ 2I + τ 2AA′.
Moreover, in this model we can analytically marginalize out some of the model
parameters. See Section 4.

2.3. Consistency. We briefly discuss posterior consistency of these models,
noting that they have been extensively examined by Ghosal and co-authors [see,
in particular, Ghosal, Ghosh and Ramamoorthi (1999) and Ghosal (2009)]. Ghosal
(2009) defines a Mixture of Dirichlet Process (MDP), where the Dirichlet process
is the error distribution, with possibly additional hyperparameters for the base mea-
sure. Alternatively, there is the Dirichlet Process Mixture (DPM)3 where, for a
parametric density, we assume there is a latent variable from a unknown and un-
restricted distribution, modeled with a Dirichlet process prior. The famous incon-
sistency result of Diaconis and Freedman (1986), and the results of Doss (1985a,
1985b), are for the MDP model while our Dirichlet random effects model is an
example of DPM with a normal density for the observations.

Ghosal (2009) showed that for the MDP model, the conditions of the general
consistency theory of Schwartz (1965) are not satisfied due to the discreteness
of the resulting Dirichlet likelihood; thus the posterior from the MDP model can
be inconsistent. However, the DPM likelihood is smooth enough to satisfy the
conditions of Schwartz’s theorem, and thus posterior consistency holds. Therefore,
it follows that the posterior of our proposed Dirichlet random effects model is
consistent.

We conducted a small simulation study to examine the behavior of the posterior
estimates of the coefficients in a linear DPM model. In this simulation, we fix
the number of subclusters, k, to be 20% of sample size, and the concentration
parameter m by using (18). Other parameters are fixed at σ 2 = 1, τ 2 = 4 and β =
(β0, β1)

′ = (1,2)′. From Table 1 we see that the standard deviations get smaller as
sample size bigger, and the estimates are getting close to the true value as n gets
bigger, illustrating the posterior consistency for the linear Dirichlet random effects
models.

TABLE 1
Estimation of the coefficient parameters: Posterior means and standard deviations

Condition m β0 β1

n = 100 and k = 20 7.246 0.618 (0.114) 1.945 (0.110)
n = 500 and k = 100 37.318 0.927 (0.046) 1.986 (0.045)
n = 1000 and k = 200 74.915 1.051 (0.032) 2.040 (0.033)

3It appears that the terms Mixture of Dirichlet Process and Dirichlet Process Mixture and not used
unambiguously in the literature.
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2.4. A probit mixed Dirichlet random effects model. A generalized linear
mixed model (GLMM) can be specified to accommodate outcome variables con-
ditional on mixtures of possibly correlated random and fixed effects [Breslow and
Clayton (1993)]. For example, assume that there is a Bernoulli selection process
where we observe Yi according to

Yi ∼ Bernoulli(pi), i = 1, . . . , n,(8)

where yi is 1 or 0; thus pi = E(Yi) is the probability of a success for the ith
observation. Moreover, using a link function g(·), we can express the transformed
mean of Yi as a linear function,

g(pi) = Xiβ + ψi,(9)

where Xi are covariates associated with the ith observation, β is the coefficient
vector, and ψi is a random effect accounting for subject-specific deviation from
the underlying model. The ψis are usually assumed to be distributed as N(0, σ 2

ψ).
Variations of GLMMs were used by Dorazio et al. (2008) to model spatial het-

erogeneity in animal abundance, and Gill and Casella (2009) modeled political
science data by using a GLMM with an ordered probit link. For Bayesian infer-
ence, Albert and Chib (1993) used a Gibbs sampler by introducing a latent variable
into the model and noted that the probit model on the binary response is connected
with the normal linear model on a continuous latent data response. Mukhopadhyay
and Gelfand (1997) used a fully Bayesian approach to fit generalized linear models
with Dirichlet random effects, and Ghosh et al. (1998) proposed hierarchical Bayes
generalized linear models for longitudinal GLMMs in small area estimation, and
provided a general theorem that ensures the propriety of posteriors under diffuse
priors.

Although we can proceed to develop estimators with a general link function (9),
choosing g to be the probit link greatly simplifies things, which is what we will
do. If we introduce the latent variable

Ui ∼ N(Xiβ + ψi, σ
2),(10)

then defining Yi = I (Ui > 0) results in the probit model. Thus, if we consider the
hierarchy to start with the Ui , we are in exactly the model of Section 2.2. To fit
the probit model we then add an additional step to the Gibbs sampler to generate
the Ui conditional on the remaining parameters. This results in a truncated normal
random variable generation, with details in Appendix A.2.

3. Estimating the precision parameter. In this section we look at the per-
formance of the maximum likelihood estimates of m using both profile likelihood
and marginal likelihood. We find that these estimates can be unstable, and hence
suggest an alternative based on a posterior mode, which we ultimately implement
with importance sampling in Section 6.
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3.1. Maximum likelihood estimates. From (7) define

Lk(θ |y) = ∑
A∈Ak

k∏
j=1

�(nj )f (y|θ,A).(11)

Then, as in Liu (1996) or Doss (1994), we can obtain a profile likelihood estimate
of m. That is, for each fixed value of θ we can differentiate the log of (7) and set it
equal to 0 to obtain the profile MLE as the solution to∑n

k=1 kmk−1Lk(θ |y)∑n
k=1 mk Lk(θ |y)

=
n∑

i=1

1

m + i − 1
(12)

which defines m̂(θ), the profile MLE.
This development can be easily modified to obtain the marginal likelihood es-

timate of m, m̂. Under the usual regularity conditions, when m̂ and m̂(θ̂) are both
consistent estimates, we would expect that the marginal MLE would be a more
stable estimate of the precision parameter.

Starting from (11) we can also integrate over θ to obtain the marginal likelihood,

Lk(y) =
∫

Lk(θ |y) dθ.(13)

The same development as above will lead to the expression (12) with Lk(θ |y)

replaced by Lk(y).
We also note that expressions for the approximate variances of either m̂ or m̂(θ̂)

can be easily attained from the second derivative of the appropriate log likelihood
evaluated at the estimate.

3.2. Solving the likelihood equations. Note that, for either profile or marginal
likelihood, we can write the log likelihood function as

�(m) = log

(
n∑

k=1

mkck

)
−

n∑
i=1

log(i − 1 + m),(14)

where ck = Lk(θ |y) for profile likelihood and ck = Lk(y) for marginal likelihood.
The derivative of the log-likelihood is given by

∂

∂m
�(m) =

∑n
k=1 kmk−1ck∑n

k=1 mkck

−
n∑

i=1

1

i − 1 + m
.(15)

It is straightforward to show that

lim
m→0

∂

∂m
�(m) = 2c2

c1
−

n∑
i=2

1

i − 1
,(16)

lim
m→∞ sgn

(
∂

∂m
�(m)

)
= sgn

(
n∑

i=1

(i − 1) − cn−1

cn

)
,
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where sgn(·) is the sign of the function. Note that limm→∞ ∂
∂m

�(m) = 0, but the
direction of approach is important. The signs of the derivatives at the extremes are
only functions of the ratios of the ck , the pieces of the likelihood. (We can assume,
without loss of generality, that

∑
k ck = 1.)

We would typically expect the sign of the derivative at m = 0 to be positive.
Otherwise one of two cases could occur. If the derivative starts out negative and
never changes sign, it will be the case that m̂ = 0 which implies that the Dirichlet
model collapses back to the base model. If not, the derivative would cross from
negative to positive, implying that a solution to the likelihood equations could
result in a minimum, and thus we must exercise more care in finding the MLE.
In either case, the sign of the derivative at m = 0 depends on the values of the
likelihoods with partition sizes k = 1 and k = 2.

We would also like the limiting sign as m → ∞ to be negative, otherwise it
could be the case that m̂ = ∞ or, depending on the sign at 0, there could be multi-
ple interior extrema. If cn is close to 0, then the limit can be positive. Note also that
the first term of the sign of the derivative equals (n−1)(n−2)

2 , so for the sign of the

derivative to negative, cn−1
cn

should be greater than (n−1)(n−2)
2 , a number that grows

rapidly with the sample size. Thus, the sign of the derivative at m = ∞ depends
on the likelihoods for partition sizes k = n − 1 and k = n, and the sample size n.

As an illustration of the possible shapes of the likelihood function, we consider
a number of simple cases for n = 6:

c = (0,0,0,0,0,1),
∂

∂m
�(m) is ↑ so m̂ = ∞;

c = (1,0,0,0,0,0),
∂

∂m
�(m) is ↓ so m̂ = 0;

c = (1,1,1,1,0,0),
∂

∂m
�(m) is − + − so there is a minimum

(17)
and maximum;

c = (1,1,0,0,1,1),
∂

∂m
�(m) is − + so there is a unique minimum;

c = (1,0,0,0,0,1),
∂

∂m
�(m) is + − so there is a unique maximum.

Thus the likelihood function can have a variety of shapes, which are also illustrated
in Figure 1. Moreover, we also note that the likelihood of m can be very flat,
meaning that there is insensitivity to the value of the MLE. Referring to (15), the
MLE actually corresponds to finding the m that solves this equation. Liu (1996)
referred to this as the equating of prior and posterior means (where the expectation
is taken using the discrete distribution with weights mkck) as the right-hand side
of this equation can be interpreted as a prior number of clusters. For example, if
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FIG. 1. Log likelihood functions for a selection of configurations of component likelihoods given
in (17). The vectors c are the configuration of the marginal likelihoods.

we define κ by

κ =
n∑

i=1

m

m + i − 1
,(18)

then κ is the expected number of prior clusters. Even though m̂ can be quite vari-
able, there is less variability in κ̂ = ∑n

i=1
m̂

m̂+i−1 .

3.3. Posterior mode estimates. Since the likelihood of the precision parameter
depends on the likelihoods from the sub-cluster size k = 1,2, n − 1 and n, this
reflects an insensitivity to the likelihood and the sample size n. For example, when
Lk are equal for all k, limm→0

∂
∂m

�(m) > 0, but limm→∞ ∂
∂m

�(m) > 0. Thus, in
this case, we easily get the MLE as m̂ = ∞.
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Given the potential problems with using and MLE for m, we consider a prior
on m that results in a unique value of the posterior mode. One of the candidates is
a gamma distribution with the shape parameter a and scale parameter b. Using the
prior g(m) = 1

�(a)ba ma−1e−m/b we have

L(θ |y) = �(m)

�(m + n)
g(m)

n∑
k=1

mk
∑

A∈Ak

k∏
j=1

�(nj )f (y|θ,A).(19)

If we now take logs and differentiate, this amounts to adding the factor a−1
m

− 1
b

to (15). The result of this is that the derivative of this log posterior increases from
m = 0 and decreases as m → ∞, guaranteeing an interior global maximum. If we
integrate (19) we then get the marginal posterior for m, which behaves in a similar
way.

3.4. Simulation study of a linear Dirichlet mixed model. Using the normal
linear model of Section 2.2, we conducted a simulation study with a gamma prior,
m ∼ gamma(a, b) to study the behavior of the estimates of m. We take n = 6,
κ = 3, μ = 0, τ 2 = 1 and β = (1,2,3). The Dirichlet process on the random effect
ψ has precision parameter m and base distribution G0 = N(0, τ 2). We simulated
100 data sets by generating X1 and X2 from N(0,1) using the fixed design matrix
to generate Y .

In this setting, k = 1, . . . ,6, and from the calculation of the Stirling number
of the second kind, there are 1,31,90,65,15,1 possible subclusters, respectively.
The matrices A associated with these subclusters can be generated, and we sum
up the likelihood with all possible subclusters for each k for the profile likeli-
hood.

We estimate m with various settings of the prior mean and variance. With n = 6,
κ = 3 and m = 5, the solution of m from equation (18) is m = 1.70. The numerical
summary is given in Table 2 and the histogram of the estimated k is given in

TABLE 2
For n = 6, κ = 3, m = 5 and various values of the prior parameters, we estimate the precision

parameter m and its transformed value k. Standard errors are in parentheses

Condition m κ

ab = 2 and ab2 = 10 1.85 (0.06) 3.10 (0.03)
ab = 3 and ab2 = 10 2.56 (0.14) 3.47 (0.07)
ab = 4 and ab2 = 10 3.07 (0.31) 3.67 (0.14)
ab = 2 and ab2 = 100 1.98 (0.01) 3.18 (0.01)
ab = 3 and ab2 = 100 2.95 (0.02) 3.63 (0.01)
ab = 4 and ab2 = 100 3.90 (0.02) 3.95 (0.01)
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FIG. 2. A histogram of the estimated k with prior mean 2 and variance 10.

Figure 2. For the estimation of κ , we use the posterior mean of m, m̂ and calculate
κ̂ by using equation (18).

From Table 2, we observe that if the prior mean ab is close to m̂ = 1.70, we get
a good estimate of κ̂ that is close to the fixed κ = 3. However, if the prior variance
is too big, then the estimate of κ is less precise. Also, from Figure 2, we observe
that the histogram of the estimated κ with ab = 2 is almost symmetric at κ̂ = 3.10
with small variance.

4. A Gibbs sampler for the model. We describe a general Gibbs sampling
scheme that iteratively generates A matrices and then model parameters assuming
that m is fixed at either the MLE or posterior mode. Details on the estimation of m

are in Section 6.
Start with the joint likelihood,

L(θ,A|y) = �(m)

�(m + n)
g(m)mk

k∏
j=1

�(nj )f (y|θ,A).(20)

With a flat prior on A and π(θ), we get the joint posterior distribution as

π(θ,A|y) = mkf (y|θ,A)π(θ)∫
�

∑
A mkf (y|θ,A)π(θ) dθ

.(21)
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Based on (21), the full conditional posteriors of θ and A are

π(θ |A,y) = mkf (y|θ,A)π(θ)∫
� mkf (y|θ,A)π(θ) dθ

= f (y|θ,A)π(θ)∫
� f (y|θ,A)π(θ) dθ

,

π(A|θ,y) = mkf (y|θ,A)π(θ)∑
A mkf (y|θ,A)π(θ)

= mkf (y|θ,A)∑
A mkf (y|θ,A)

.

We now outline a Gibbs sampler that will generate from these conditionals by
generating n × n A matrices and recovering the subcluster size through marginal-
ization.

For t = 1, . . . , T , at iteration t :
1. Starting from (θ(t),A(t)),

θ(t+1) ∼ π
(
θ |A(t),y

)
.(22)

2. Given θ(t+1),

q(t+1) = (
q

(t+1)
1 , . . . , q(t+1)

n

)
∼ Dirichlet

(
n

(t)
1 + r1, . . . , n

(t)
k + rk, rk+1, . . . , rn

)
,(23)

A(t+1) ∼ mk′
f

(
y|θ(t+1),A

)(
n

n′
1 · · ·n′

n

) n∏
j=1

[
q

(t+1)
j

]n′
j ,

where n′
1 +· · ·+n′

n = n with k′ of the n′
j > 0. Sampling of the model parameters θ

in (22) is straightforward (Appendix A.1), so we will concentrate on the sampling
of A and q.

The matrix A is n×n with column sums n1, . . . , nn, and the columns with zero
sums will be removed to obtain an n × k′ matrix, according to Appendix B. Here
we keep the rj as a general choice, but we will see in Section 5.2 and Appendix C.1
that we should choose rj = 1 for all j .

The transition kernel of this Markov chain is

k((θ,A), (θ ′,A′)) = π(θ ′|A,y)

∫
Q

P(A′|q, θ ′)f (q|A)dq(24)

with

P(A|q, θ) = mkf (y|θ,A)
( n
n1···nn

)∏n
j=1 q

nj

j∑
A mkf (y|θ,A)

( n
n1···nn

)∏n
j=1 q

nj

j

and

f (q|A) = �(n + ∑n
j=1 rj )∏k

j=1 �(nj + rj )
∏n

j=k+1 �(rj )

k∏
j=1

q
nj+rj−1
j

n∏
j=k+1

q
rj−1
j .
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Now we take rj = 1, and then we can express the multinomial as(
n

n1 · · ·nk

) k∏
j=1

q
nj

j = �(n + 1)∏n
j=1 �(nj + 1)

n∏
j=1

q
nj

j

because the zero valued nj s take care of themselves. With this choice of rj , the
transition kernel has π(θ,A|y) as its stationary distribution; details are given in
Appendix C.1.

5. Generating the subclusters. In this section we discuss two aspects of gen-
erating the subclusters. First, we address how to generate according to (23). Then
we examine convergence rates and establish that our sampler is an improvement,
in terms of operator norm and efficiency, over commonly used algorithms.

5.1. Generating the matrix A. Generation of the matrix A can be accom-
plished by using a Gibbs sampler on the rows of A. Recall that ai, i = 1, . . . , n

are the rows of A. Define A−i to be the matrix A with the ith row removed and
a

(�)
i to be a vector of zeros with a 1 in the �th position. The matrix (a

(�)
i ,A

(t)
−i) has

column sums n
(�)
j with k(�) of n

(�)
j > 0. Then for i = 1, . . . , n,

P
(
ai = a

(�)
i |A(t)

−i

)
∼

mk(�)
f (y|θ, (a

(�)
i ,A

(t)
−i ))

( n

n
(�)
1 ···n(�)

n

)∏n
j=1[q(t+1)

j ]n(�)
j

∑n
�′=1 mk(�′)

f (y|θ, (a
(�′)
i ,A

(t)
−i))

( n

n
(�′)
1 ···n(�′)

n

)∏n
j=1[q(t+1)

j ]n(�′)
j

,

where we update A
(t)
−i in the usual (Gibbs sampling) way.

Alternatively, we can use a Metropolis–Hastings algorithm with a candidate
taken from a multinomial/Dirichlet as described in Appendix B.2. Based on the
value of the qj in (23) we generate a candidate A from the multinomial and then
remove the columns with column sum 0. That is, generate an n × n matrix where
each row is a multinomial, and the effective dimension of the matrix, the size of
the subclusters, are the non-zero column sums. Deleting the columns with column
sum zero is a marginalization of the multinomial distribution. The probability of
the candidate follows from Appendix B.2, and the Metropolis–Hastings step is
then done.

5.2. Convergence properties. From (23), we see that given the subclusters,
the sampling of the model parameters from π(θ |A,y) is straightforward. Thus,
in investigating convergence we are only concerned with the convergence of the
Markov chain on the subclusters. Clearly, if convergence is improved for this part
of the chain it will then transfer to the entire chain.
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If we ignore the model parameters, then we are concerned with convergence of
the chain to the stationary distribution (2), that is,

π(A) = π(n1, . . . , nk) = �(n)

�(n + m)
mk

k∏
j=1

�(nj ),(25)

and first we derive the full conditionals in the following way. Start with (n1, . . . ,

nk) with sum n − 1, and generate a new row of the A matrix. The matrix A is
n × k, and when we generate a new row, either the dimension will remain n × k or
we will increase to n × k + 1. If we write a = {aj }, then

P(aj = 1, n1, . . . , nk) = �(n)

�(n + m)
mk�(nj + 1)

k∏
j ′=1
j ′ 
=j

�(n′
j ) for j = 1, . . . , k,

P (aj = 1, n1, . . . , nk) = �(n)

�(n + m)
mk+1

k∏
j ′=1

�(n′
j ) for j = k + 1,

P (n1, . . . , nk) = �(n − 1)

�(n − 1 + m)
mk

k∏
j=1

�(nj ).

This results in

P(aj = 1|n1, . . . , nk) =
⎧⎪⎨⎪⎩

nj

n − 1 + m
, for j = 1, . . . , k,

m

n − 1 + m
, for j = k + 1,

(26)

which are exactly the full conditionals derived by Neal (2000), his equation (3.6)
ignoring the model parameters, using a limit argument starting from a finite-
dimensional Dirichlet. The Gibbs sampler based on (26) is the basis for most of
the eight algorithms that he describes; some of which were originally developed
by other authors.

The Gibbs sampler resulting from (23), ignoring the model parameters, is

P(A|q) = (�(n)/�(n + m))mk ∏k
j=1 �(nj )

( n
n1···nk

)∏k
j=1 q

nj

j∑
A(�(n)/�(n + m))mk

∏k
j=1 �(nj )

( n
n1···nk

)∏k
j=1 q

nj

j

and

(27)

f (q|A) = �(n + ∑n
i=1 rj )∏k

j=1 �(nj + rj )
∏n

j=k+1 �(rj )

k∏
j=1

q
nj+rj−1
j

n∏
j=k+1

q
rj−1
j ,

and a similar argument shows that the full conditionals from this chain are

P(aj = 1|n1, . . . , nk) ∝

⎧⎪⎪⎨⎪⎪⎩
nj

nj + 1

qj

n − 1 + m
, for j = 1, . . . , k,

m

n − 1 + m
qj , for j = k + 1, . . . , n.

(28)
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Notice that for qj = nj + 1, j < k and qj = 1, j > k (the normalization does
not matter), we see that Neal’s Gibbs sampler (26) is the same as (28). We can
therefore write the transition kernel of (26) as

KN(A,A′) = P(A′|q0)g(q0|A),

where g(q0|A) is a point mass. In this notation, the kernel of (28) is

K(A,A′) =
∫
Q

P(A′|q)f (q|q0)g(q0|A)dq,

where f (q|q0) is the same as f (q|A) in (27). The vector q0 merely serves to pass
the nj .

We are now in the setup of Hobert and Marchev (2008) and can use their Theo-
rem 3 to establish the superiority of K(A,A′) over KN(A,A′).

THEOREM 1. For the transition kernels KN(A,A′) and K(A,A′), both with
stationary distribution given by (25):

1. K(A,A′) dominates KN(A,A′) in operator norm;
2. K(A,A′) dominates KN(A,A′) in the efficiency ordering of Mira and Geyer

(1999) [see also Mira (2001)], which implies that, for any square-integrable
function h, the asymptotic variance is smaller using K(A,A′) than using
KN(A,A′).

PROOF. In the terminology of Hobert and Marchev (2008), KN(A,A′) is in
the form of a Data Augmentation (DA) algorithm, and K(A,A′) is a parameter-
expanded version of KN(A,A′). The theorem will be established if we can show
that K(A,A′) is reversible. This is straightforward as K(A,A′) is, itself, a DA
algorithm since K(A,A′) = ∫

Q P(A′|q)f (q|A)dq. To be specific, if we take
rj = 1, then K(A,A′) satisfies the detailed balance condition K(A,A′)π(A) =
K(A′,A)π(A′) (Appendix C.2). �

Therefore, in the estimation of any square integrable function h, using (28) will
result in a smaller variance than obtained by using (26).

5.3. Assessing the improvement. The results of Section 5.2 show that our sam-
pler should mix better than “Stickbreaking” as defined by (26). Although we do not
know the amount of potential improvement, the results of Roy and Hobert (2007)
suggest that there are substantial gains to be had.

To assess the amount of improvement of the Gibbs sampler, the following sim-
ulation study was done. For the linear Dirichlet mixed effects model described in
Section 2.2 we simulated four data sets. For n = 100 we took A matrices corre-
sponding to 1, 5, 25 and 100 groups in the data and ran 20 Markov chains, each for
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FIG. 3. For n = 100, comparison of variance estimates using the “Stickbreaking” algorithm of (26)
(S-B, dashed line) and the algorithm given in (28), the “Dirichlet Random Effects Model” (DREM,
solid line). The four plots correspond to four underlying distributions of 1, 5, 25 and 100 groups.
Twenty Markov chains were run, and the variance of the 20 estimates was calculated at each of the
500 iterations.

500 iterations. At each iteration we calculated the variance of the 20 cumulative
means which are displayed in Figure 3.

As can be seen, the improvement over the “Stickbreaking” algorithm can be
quite substantial; in most cases we see almost a 50% percent improvement. Al-
though we are not claiming that this will hold in all cases, we have a clear indica-
tion that substantial reduction in Monte Carlo variance can be attained.

6. Importance sampling the precision parameter. To estimate the precision
parameter m we want to work with a marginal likelihood function in the form
of (7). Based on the development in the previous sections, we start with the mar-
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ginal posterior,

π(m|y) = �(m)

�(m + n)
g(m)

n∑
k=1

mkfk(y),(29)

where

fk(y) =
∫
�

∑
A∈Ak

k∏
j=1

�(nj )f (y|θ,A)π(θ) dθ.

To take advantage of this functional form for the estimation of m, we want to cal-
culate fk(y) for each k = 1, . . . , n. However, this strategy is difficult to implement
for a number of reasons. First, it would necessitate running a full Gibbs sampler
(or other MC technique) for all k = 1, . . . , n. Second, the implementation is prob-
lematic. For example, consider using an importance sampler based on simulating
from the model

θ ∼ f (y|θ,A),

ai ∼ Multinomial(1, (q1, . . . , qk)), independent,(30)

q = (q1, . . . , qk) ∼ Dirichlet(α, . . . , α),

which leads to the joint posterior distribution

θ,A ∼ f (y|θ,A)
�(kα)∏k
j=1 �(α)

∫ k∏
j=1

q
nj+α−1
j dq(31)

= f (y|θ,A)
�(kα)

�(n + kα)

k∏
j=1

�(nj + α)

�(α)
,

where nj = ∑
i aij . Unfortunately, there is no guarantee that nj > 0, and samples

with nj = 0 will have to be discarded.
However, we can proceed as in (23), and modify (30) to use an n-dimensional

Dirichlet,

q = (q1, . . . , qn) ∼ Dirichlet(α, . . . , α),

and then generate ai independently from this Dirichlet. We then eliminate from the
A matrix all columns whose sum is zero. The resulting value of k has the distri-
bution given in (31) because of the marginalization properties of the multinomial
and Dirichlet.

The simulation strategy is the following. For t = 1, . . . , T we generate A(t)

according to (30) but using the n-dimensional Dirichlet, and then marginalize to
the number of nonzero nj . We then gather the A(t) according to their values of k.
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Then, for each k, if there are Tk matrices A of that size, we estimate fk by

fk(y) =
∫
�

∑
A∈Ak

k∏
j=1

�(nj )f (y|θ,A)π(θ) dθ

= ∑
A∈Ak

∫
�

k∏
j=1

�(nj )f (y|θ,A)π(θ)

f (y|θ,A)π(θ)(�(kα)/�(n + kα))
∏k

j=1(�(nj + α)/�(α))

× f (y|θ,A)π(θ)
�(kα)

�(n + kα)

k∏
j=1

�(nj + α)

�(α)
dθ(32)

≈ �(n + kα)�(α)k

�(kα)

1

Tk

Tk∑
t=1

k∏
j=1

�(n
(t)
j )

�(n
(t)
j + α)

= f̂k(y),

where we see very clearly that m only depends on the nj . We now use f̂k(y) in
(29) to obtain the marginal MLE of m.

We can further reuse these random variables for all k′ < k by randomly choosing
two columns and adding them together. This results in an A matrix of one fewer
dimension. Details are given in Appendix B.

7. Application. In this section we use the Gibbs sampler for a generalized
linear mixed model with a Dirichlet process random effect term and probit link
to analyze survey data from Scotland. On September 11, 1997, an overwhelming
74.3% of Scottish voters approved of the establishment of the first Scottish na-
tional parliament in nearly three hundred years, and on the same ballot the voters
gave strong support, 63.5%, to granting this parliament taxation powers. This vote
represents a watershed event in the modern history of Scotland which was a free
and independent country separate from England until 1707. This vote is part of the
Labour government’s decentralization program and there is still uncertainty about
the future role of Scottish government with the United Kingdom and the Euro-
pean Union. What we are interested in here are those who subsequently voted for
the Conservative (Tory) party in Scotland and whether such a vote is intended to
mitigate Labour’s devolution program in Scotland.

The data come from the British General Election Study, Scottish Election Sur-
vey, 1997 (ICPSR Study Number 2617). These data contain 880 valid cases, each
from an interview with a Scottish national after the election. Our outcome vari-
able of interest is their party choice in the UK general election for Parliament
where we collapse all non-Conservative party choices (abstention, Labour, Liberal
Democrat, Scottish National, Plaid Cymru, Green, Other, Referendum) to one cat-
egory which produces 104 Conservative votes. The chosen explanatory variables
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are intended to explain this choice and include two measures of political efficacy:
POLITICS, which asks how much interest the respondent has in political events
(increasing scale: none at all, not very much, some, quite a lot, a great deal), and
READPAP, which asks about daily morning reading of the newspapers (yes = 1 or
no = 0). It is also important to establish party identity separate from vote choice,
PTYTHNK, and how strong that party affiliation is for the respondent (categorical
by party name), IDSTRNG (increasing scale: not very strong, fairly strong, very
strong).

We also look at respondents’ views on various policy issues. The variable TAX-
LESS asks if “it would be better if everyone paid less tax and had to pay more
towards their own healthcare, schools and the like” (measured on a five point in-
creasing Likert scale). DEATHPEN asks whether the UK should bring back the
death penalty (measured on a five point increasing Likert scale). LORDS queries
whether the House of Lords should be reformed (asked as remain as is coded as
zero and change is needed coded as one). The question SCENGBEN asks how eco-
nomic benefits are distributed between England and Scotland with the following
choices: England benefits more = −1, neither/both lose = 0, Scotland benefits
more = 1. The important question INDPAR asks which of the following repre-
sents the respondent’s view on the role of the Scottish government in light of the
new parliament: (1) Scotland should become independent, separate from the UK
and the European Union; (2) Scotland should become independent, separate from
the UK but part of the European Union; (3) Scotland should remain part of the
UK, with its own elected parliament which has some taxation powers; (4) Scot-
land should remain part of the UK, with its own elected parliament which has no
taxation powers and (5) Scotland should remain part of the UK without an elected
parliament. Relatedly, SCOTPREF1 asks, “should there be a Scottish parliament
within the UK?” (yes = 1, no = 0).

Finally, we use three demographic explanatory variables: RSEX, the respon-
dent’s sex, RAGE, the respondent’s age, RSOCCLA2, the respondents social class
(7 category ascending scale), TENURE1, whether the respondent rents (0) or owns
(1) their household and a categorical variable for church affiliation, measurement
of religion is collapsed down to one for the dominant historical religion of Scotland
(Church of Scotland/Presbyterian) and zero otherwise and designated PRESB.

We set σ 2 = 1 to establish the scale and provide an intuitive (standard) probit
metric. This decision appears to have little influence on the resulting posteriors and
allows the ψ specification sufficient latitude to draw nonparametric information
from the data. The parameters in the priors on μ and τ 2 are chosen to make the
priors sufficiently diffuse to allow the random effect to do its work. In previous
work [Gill and Casella (2009)], we observed little sensitivity to hyperparameter
values.

We ran the Gibbs sampler for 5000 iterations disposing of the first 2000. All of
the common diagnostics (Geweke, Brooks–Gelman–Rubin, Heidelberger–Welsh,



DIRICHLET RANDOM EFFECTS MODELS 999

FIG. 4. Cumulative mean plot, Scotland voting model.

graphics) point toward convergence of the Markov chain to its stationary distribu-
tion. Figure 4 is a cumulative mean plot for each of the dimensions for the entire
t = 5000 period of the chain.

Table 3 provides quantiles for the posterior marginal distributions. We observe
that an interest in politics and regular reading of the newspapers increases the
probability of voting Conservative as does (not surprisingly) supporting less taxes
and the return of the death penalty. We see the same positive effect for men versus
women, older versus younger and homeowners versus renters. Those with stronger
party attachments are also more likely to vote for the Conservative party. Reform-
ing the House of Lords, Presbyterians and those affiliated with more liberal parties
are less likely to vote Conservative.

Two results are surprising. First, those that think that economic policies bene-
fit Scotland more than England are more likely to vote for the Conservative party
which is much more aligned with English voters than Scottish voters in general.
Perhaps there is a sense that Conservative voting brings attention to Scottish is-
sues from the party. More surprisingly, favoring an independent party is positively
associated with voting Conservative through the model. This was our key variable
of interest and the relationship is not in the direction expected. The Conservative
party is not generally favorable to devolution issues, so these voters are clearly
cross-pressured. It is important to keep in mind that the new parliament has tax-
ation powers and thus diminishes the power of local council authorities who are
overwhelmingly associated with the Labour and Scottish National parties. Thus a
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TABLE 3
Posterior model quantiles, voting model

0.10 0.25 0.50 0.75 0.99

CONSTANT −1.69 −1.32 −0.91 −0.48 0.53
POLITICS 0.12 0.17 0.23 0.29 0.44
READPAP 0.05 0.17 0.31 0.45 0.78
PTYTHNK −0.81 −0.75 −0.68 −0.62 −0.45
IDSTRNG 0.14 0.19 0.25 0.31 0.46
TAXLESS 0.02 0.07 0.13 0.19 0.32
DEATHPEN 0.01 0.05 0.09 0.14 0.24
LORDS −0.73 −0.61 −0.48 −0.37 −0.07
SCENGBEN 0.22 0.30 0.39 0.47 0.67
SCOPREF1 −1.41 −1.29 −1.14 −1.00 −0.65
RSEX 0.20 0.30 0.43 0.56 0.84
RAGE 0.01 0.01 0.01 0.02 0.03
RSOCCLA2 −0.23 −0.19 −0.15 −0.10 0.00
TENURE1 −0.23 −0.19 −0.15 −0.10 0.02
PRESB −0.41 −0.29 −0.17 −0.04 0.22
INDPAR 0.02 0.15 0.29 0.44 0.77

Conservative voter may welcome a more centralized taxation program with possi-
bly less influence from these parties, at least at the local level.

In terms of model fit, notice that, aside from the constant, only two marginal
posteriors do not have 90% HPD intervals bounded away from zero. It turns out
that by every common measure of fit the generalized linear mixed model with a
Dirichlet process random effect term outperforms a simple Bayesian probit model
with diffuse uniform prior distributions on the parameters. Indeed, when we com-
pare the lengths of credible intervals in Figure 5, we find that the Dirichlet model
results in uniformly shorter intervals than those of a normal random effects model.
Thus as we anticipated in Section 1, the richer random effects model is able to
remove more extraneous variability resulting in tighter credible intervals. We take
this as evidence that the new procedure is capturing nonparametric information of
interest.

8. Discussion. Our interest in models with Dirichlet random effects grew
from modeling social science data, where scientists expressed concern over
Bayesian models that used informative priors. The Dirichlet process random ef-
fects model helps to balance the information from the data and the belief of the
researcher while still allowing a normal-type interpretation (in terms of means and
variances). As noted previously, we are in agreement with the sentiment of Burr
and Doss (2005), who note that random effects, unlike error terms, can not be
checked (there are no residuals). Thus a model with normal random effects is a
model of convenience, and moving to a richer model such as the Dirichlet process
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FIG. 5. Comparison of 90% credible intervals for the Dirichlet random effects model (black) to
those from a normal random effects model (blue).

is a step in relaxing unverifiable assumptions. In particular, the subclustering struc-
ture of the Dirichlet process may capture extra variation in the random effects that
escape the normal random effects models. The fact that data analysis with the
Dirichlet random effect model often differs substantially from the normal random
effects model, as noted in Section 7, supports this claim.

Representing the subclustering structure through the symmetric binary matrix
A is not new. For example, such an equivalence representation was noted by Mc-
Cullagh and Yang (2006). Here, the representation has proved useful not only in
deriving alternative forms of the model but also in leading to an improved Gibbs
sampler. The influence of the random effects, as modeled with the parameters ψ

and η, is only felt through the matrix A, and in some cases these parameters may
not have to be generated (see the representation in Section 2.2). This again will
lead to a more efficient Gibbs sampler.

The improvement in the Gibbs sampler, as described in Sections 5.2 and 5.3,
appears to come with an increase in computational effort, as we want to start each
iteration with an n × n matrix A. However, due to the binary structure of A, such
a matrix need never be generated. In particular, we can use the correspondence
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between a multinomial random variable and a discrete random variable to represent
the n × n matrix A as an n × 1 vector α. If X ∼ Multinomial(1, (p1, . . . , pn)),
we create a discrete random variable X∗ satisfying P(X∗ = j) = pj . We then
use X∗ to generate the rows of A. For example, if n = 6 and six samples of X∗
gives the vector (2,2,1,1,3,1), this represents a matrix A with row 1 having a
1 in column 2, row 2 having a 1 in column 2, etc., with the full matrix being the
matrix A in (5).

We started this project to investigate generalized linear models with Dirichlet
random effects but quickly realized that dealing with m is of prime importance
and concentrated on linear models to better understand the estimation. As we have
seen, ordinary likelihood could be problematic which may be a result of the fact
that there is really very little information about m coming from the data. As we
saw in Section 3, the information in the model about m is only contained in the
subclusters, which makes it relatively important to check that the results of the
model as somewhat insensitive to the value of the estimated m.

Finally, we note that although we have concentrated on linear and probit models,
the results will apply directly to a wider class of generalized linear models. There
are implementation problems with the Gibbs sampler that arise with models such
as the logit, where one needs to use either a slice sampler, a Metropolis–Hastings
step or a demarginalization with the Kolmogorov–Smirnov distribution [Andrews
and Mallows (1974)]. We have looked at these implementations in Kyung, Gill and
Casella (2009). However, these are all variations on the model and, when any gen-
eral link function such as (9) is used, the Gibbs sampler for A and the estimation
of m will remain the same.

APPENDIX A: GENERATING THE MODEL PARAMETERS

A.1. A linear model. For given A, the likelihood function is given by

Lk(β,σ 2, τ 2,η|A,y) =
(

1

2πσ 2

)n/2

e−|y−Xβ−Aη|2/(2σ 2)

(
1

2πτ 2

)k/2

e−|η|2/(2τ 2).

We add the following normal and inverted gamma (IG) priors:

β|σ 2 ∼ N(0, σ 2I ),

τ 2 ∼ IG(a1, b1),(33)

σ 2 ∼ IG(a2, b2).

Then for fixed m and A, with A∗ = 1
τ 2 I + 1

σ 2 A′A, a Gibbs sampler of (β, σ 2, τ 2,η)

is

η|β,σ 2, τ 2,A,y ∼ Nk

(
1

σ 2 A∗−1A′(y − Xβ),A∗−1
)
,

β|σ 2, τ 2,η,A,y ∼ Np

(
(I + X′X)−1X′(y − Aη), σ 2(I + X′X)−1)

,
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τ 2|β,σ 2,η,A,y ∼ IG
(

k

2
+ a1,

1

2
|η|2 + b1

)
,

σ 2|β, τ 2,η,A,y ∼ IG
(

n + p

2
+ a2,

1

2
|y − Xβ − Aη|2 + 1

2
|β|2 + b2

)
.

If we marginalize out η, the joint posterior distribution of (β, σ 2, τ 2) is

πk(β,σ 2, τ 2|A,y) =
∫

πk(β,σ 2, τ 2,η|A,y) dη

∝
(

1

σ 2

)(n+p)/2+a2+1(
1

τ 2

)k/2+a1+1

e−(|β|2/2+b2)/σ
2
e−b1/τ

2

× |A∗|1/2e−(y−Xβ)′[1−A(A∗)−1A′/σ 2](y−Xβ)/(2σ 2)

which leads to an alternate Gibbs sampler.

A.2. A probit model. Here we need to consider the latent variable Ui such
that

Ui = Xiβ + ψi + ηi, ηi ∼ N(0, σ 2),(34)

and

Yi =
{

1, if Ui > 0,
0, if Ui ≤ 0,

i = 1, . . . , n.

It can be shown that Yi are independent Bernoulli random variables with the prob-
ability of success, pi = �(

Xiβ−ψi

σ
) where � is the cdf of the standard Normal.

For given A, the likelihood function of model parameters and the latent variable
is given by

Lk(β,σ 2, τ 2,η,U|A,y)

=
n∏

i=1

{I (Ui > 0)I (yi = 1) + I (Ui ≤ 0)I (yi = 0)}

×
(

1

2πσ 2

)n/2

e−|U−Xβ−Aη|2/(2σ 2)

(
1

2πτ 2

)k/2

e−|η|2/(2τ 2),

where U = (U1, . . . ,Un) and leads to the Gibbs sampler

η|β,σ 2, τ 2,U,A,y ∼ Nk

(
1

σ 2 A∗−1A′(U − Xβ),A∗−1
)
,

β|σ 2, τ 2,η,A,y ∼ Np

(
(I + X′X)−1X′(U − Aη), σ 2(I + X′X)−1)

,

τ 2|β,σ 2,η,A,y ∼ IG
(

k

2
+ a1,

1

2
|η|2 + b1

)
,

σ 2|β, τ 2,η,A,y ∼ IG
(

n + p

2
+ a2,

1

2
|U − Xβ − Aη|2 + 1

2
|β|2 + b2

)
,
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for the model parameters. For the latent variable U, for i = 1, . . . , n,

Ui |β, τ 2, σ 2,η,A, yi ∼ N
(
Xiβ + (Aη)i, σ

2)
I (Ui > 0) if yi = 1,

Ui |β, τ 2, σ 2,η,A, yi ∼ N
(
Xiβ + (Aη)i, σ

2)
I (Ui ≤ 0) if yi = 0.

Here, we can marginalize out η such that

Lk(β,σ 2, τ 2,U|A,y) =
∫

Lk(β,σ 2, τ 2,η,U|A,y) dη

=
n∏

i=1

{I (Ui > 0)I (yi = 1) + I (Ui ≤ 0)I (yi = 0)}

× |A∗|1/2

(2πσ 2)n/2(τ 2)k/2

× e−(U−Xβ)′[I−A(A∗)−1A′/σ 2](U−Xβ)/(2σ 2),

where A∗ = 1
τ 2 I + 1

σ 2 A′A.

APPENDIX B: MARGINAL DENSITIES

In this appendix we give the details for the calculation of marginal densities of
the Dirichlet, multinomial and their mixture.

B.1. Dirichlet. Starting with an n-dimensional Dirichlet distribution, the mar-
ginal distribution of any k components is also Dirichlet. This corresponds to ex-
tracting the rows with non zero column sums in the A matrix in (23). That is, if
(q1, . . . , qn) ∼ Dirichlet(r1, . . . , rn), then for k ≤ n(

q1, . . . , qk−1,

k+1∑
j=k

qj , qk+2, . . . , qn

)

∼ Dirichlet

(
r1, . . . , rk−1,

k+1∑
j=k

rj , rk+2, . . . , rn

)

as given in Ferguson (1973).
A special case of this result is the combining of two rows which is the marginal-

ization that we use in the calculation of the estimate of m (see Section 6).
If q = (q1, . . . , qn) ∼ Dirichlet(r1, . . . , rn), then for any k and k + 1 ≤ n(

q1, . . . , qk−1,

k+1∑
j=k

qj , qk+2, . . . , qn

)

∼ Dirichlet

(
r1, . . . , rk−1,

k+1∑
j=k

rj , rk+2, . . . , rn

)
.
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B.2. Multinomial. For (X1, . . . ,Xn) ∼ Multinomial(1, (q1, . . . , qn)), mar-
ginalization of the Xis is compatible with the Dirichlet results of the previous
section. That is,(

X1, . . . ,Xk−1,

n∑
j=k

Xj

)
∼ Multinomial

(
1,

(
q1, . . . , qk−1,1 −

k−1∑
j=1

qj

))
.

We also have a similar result for the combining of two elements of the vector,
that is, if (X1, . . . ,Xn) ∼ Multinomial(1, (q1, . . . , qn)), then(

X1, . . . ,Xk−1,

k+1∑
j=k

Xj ,Xk+2, . . . ,Xn

)

∼ Multinomial

(
1,

(
q1, . . . , qk−1,1 − ∑

j 
=k,k+1

qj , qk+2, . . . , qn

))
.

B.3. Multinomial–Dirichlet. Lastly, we see that these marginalization pat-
terns persist when we combine the multinomial and Dirichlet. Let the matrix An×n

have each row be an independent multinomial as follows:

(ai1, . . . , ain) ∼ Multinomial(1, (q1, . . . , qn)), i = 1, . . . , n,

(q1, . . . , qn) ∼ Dirichlet(r1, . . . , rn),

and then create the matrix A∗ by adding together rows k + 1, . . . , n, marginalizing
(q1, . . . , qn) in the same way. Then

P(A∗) =
∫

P(A|q)f (q) dq

= �(
∑n

j=1 rj )∏n
j=1 �(rj )

∫ k−1∏
j=1

q
nj

j

(
1 −

k−1∑
j=1

qj

)nk n∏
j=k+1

q
rj−1
j dqj ,

where nj = ∑
i aij ,1, . . . , k − 1 and nk = ∑

i

∑n
j=k aij .

If we add together rows k and k+1 in the matrix A to obtain A∗, a similar result
holds:

P(A∗) = �(
∑n

j=1 rj )∏
j 
=k,k+1 �(rj )�(

∑k+1
j=k rj )∏

j 
=k,k=1 �(nj + rj )�(nk + nk+1 + ∑k+1
j=k rj )

�(n + ∑n
j=1 rj )

.
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APPENDIX C: PROPERTIES OF THE MARKOV CHAIN

C.1. Stationary distributions of (θ,A). From the transition kernel of (θ,A)

in (24), ∑
A

∫
�

K((θ,A), (θ ′,A′))π(θ,A|y) dθ

= ∑
A

∫
�

π(θ ′|A,y)

∫
Q

P(A′|q, θ ′)f (q|A)dqπ(θ,A|y) dθ

=
∫
Q

[ mkf (y|θ ′,A′)
( n
n1···nk′

)∏k′
j=1 q

n′
j

j∑
A mkf (y|θ,A)

( n
n1···nk

)∏k
j=1 q

nj

j

]

× ∑
A

f (q|A)
f (y|θ ′,A)π(θ ′)∫

� f (y|θ ′,A′)π(θ ′) dθ

×
∫
�

mkf (y|θ,A)π(θ)∑
A

∫
� mkf (y|θ,A)π(θ) dθ

dθ dq,

and note that the � integral cancels
∫
� f (y|θ ′,A′)π(θ ′) dθ inside the sum over A.

So the integral becomes

∫
Q

[ mkf (y|θ ′,A′)
( n
n1···nk′

)∏k′
j=1 q

n′
j

j∑
A mkf (y|θ,A)

( n
n1···nk

)∏k
j=1 q

nj

j

]∑
A mkf (q|A)f (y|θ ′,A)π(θ ′)∑

A

∫
� f (y|θ,A)π(θ) dθ

dq.

Now take βj = 1 for all j = 1, . . . , n so that

f (q|A) = �(2n)∏k
j=1 �(nj + 1)

k∏
j=1

q
nj

j = �(2n)

n!
(

n

n1 · · ·nk

) k∏
j=1

q
nj

j .

This cancels out the denominator sum to leave

�(2n)

n!

∫
Q mkf (y|θ ′,A′)π(θ ′)

( n
n1···nk′

)∏k′
j=1 q

n′
j

j dq∑
A

∫
� mkf (y|θ,A)π(θ) dθ

,

and evaluating the integral over q gives

�(2n)

n!
(

n

n1 · · ·nk′

) ∏n
j=1 �(n′

j + 1)

�(2n)
= 1,

where we do the n dimensional integral with q0
j for j > k′. So

∑
A

∫
�

K((θ,A), (θ ′,A′))π(θ,A|y) dθ = mkf (y|θ ′,A′)π(θ ′)∑
A

∫
� mkf (y|θ,A)π(θ) dθ

= π(θ ′,A′|y).
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C.2. Detailed balance. We have from (27)

K(A,A′)π(A) =
∫
Q

[ (�(n)/�(n + m))mk′ ∏k′
j=1 �(n′

j )
( n
n′

1···n′
k

)∏k′
j=1 q

n′
j

j∑
A (�(n)/�(n + m))mk

∏k
j=1 �(nj )

( n
n1···nk

)∏k
j=1 q

nj

j

]

×
[

�(2n)∏k
j=1 �(nj + 1)

k∏
j=1

q
nj

j

]

×
[

�(n)

�(n + m)
mk

k∏
j=1

�(nj )

]
dq

=
∫
Q

[ (�(n)/�(n + m))mk ∏k
j=1 �(nj )

( n
n1···nk

)∏k
j=1 q

nj

j∑
A (�(n)/�(n + m))mk

∏k
j=1 �(nj )

( n
n1···nk

)∏k
j=1 q

nj

j

]

×
[

�(2n)∏k
j=1 �(n′

j + 1)

k′∏
j=1

q
n′

j

j

]

×
[

�(n)

�(n + m)
mk

k′∏
j=1

�(n′
j )

]
dq

= K(A′,A)π(A′).
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